Molecular characterization of V-type H(+)-ATPase (B-subunit) in gills of euryhaline crabs and its physiological role in osmoregulatory ion uptake.
نویسندگان
چکیده
The vacuolar-type H(+)-ATPase (V-ATPase) has been implicated in osmoregulatory ion uptake across external epithelia of a growing variety of species adapted to life in fresh water. In the present study, we investigated whether the V-ATPase may also function in a euryhaline species that tolerates brackish water (8 salinity) but not fresh water, the shore crab Carcinus maenas. cDNA coding for the regulatory B-subunit of the V-ATPase was amplified and sequenced from C. maenas gills and partially sequenced from four other crab species. Two isoforms differing in the 3'-untranslated region were found in C. maenas. In this species, the abundance of B-subunit mRNA was greater in the respiratory anterior gills than the ion-transporting posterior gills and was not increased by acclimation to dilute salinity. Immunocytochemical analysis showed that the B-subunit protein is not targeted to the apical membrane but is distributed throughout the cytoplasmic compartment. Physiological studies of isolated perfused gills indicated that the V-ATPase inhibitor bafilomycin had no effect on transepithelial potential difference. Thus, in contrast to the freshwater-tolerant Chinese crab Eriocheir sinensis, in which the V-ATPase appears to play an important osmoregulatory role, the V-ATPase in C. maenas probably functions in acidification of intracellular organelles but not in transbranchial NaCl uptake.
منابع مشابه
V-type H+-ATPase and Na+,K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation.
Because of their diverse habitats, crabs are excellent experimental species to study owing to the morphological changes and physiological adaptation that occur during their terrestrial invasion. Their hemolymphic osmoregulation in brackish water is crucial for a successful terrestrial invasion. Crabs can actively uptake or excrete ions upon salinity change, and the gills play a major role among...
متن کاملOsmoregulation by Gills of Euryhaline Crabs: Molecular Analysis of Transporters1
SYNOPSIS. The physiological mechanisms by which aquatic animals regulate the osmoconcentration of their body fluids remain unclear despite many excellent studies of tissue and cell function. This review summarizes the current status of an ongoing molecular biological approach to investigating transporters and transportrelated enzymes in ion-transporting gills of osmoregulating crustaceans. We h...
متن کاملEffects of long-term exposure to different salinities on the location and activity of Na+-K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis.
The euryhalinity of mitten crab, Eriocheir sinensis, is based on osmoregulation, and thus on the activity of Na(+)-K(+)-ATPase. We studied location and activity of this enzyme in gills of juvenile crabs exposed to 5 per thousand, 25 per thousand, and 40 per thousand salinity. The posterior gills showed always a high number of immunopositive cells (IPC), staining with fluorescent antibody agains...
متن کاملNeuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans.
Gills are the primary organ for salt transport, but in land crabs they are removed from water and thus ion exchanges, as well as CO(2) and ammonia excretion, are compromised. Urinary salt loss is minimised in land crabs by redirecting the urine across the gills where salt reabsorption occurs. Euryhaline marine crabs utilise apical membrane branchial Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange power...
متن کاملBranchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters.
Bull sharks, Carcharhinus leucas, are one of only a few species of elasmobranchs that live in both marine and freshwater environments. Osmoregulation in euryhaline elasmobranchs is achieved through the control and integration of various organs (kidney, rectal gland and liver) in response to changes in environmental salinity. However, little is known regarding the mechanisms of ion transport in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 1 شماره
صفحات -
تاریخ انتشار 2001